Using DNA in Biodiversity Conservation

The aim of biodiversity conservation is the preservation of all plant and animal species, and their habitats and ecosystems.

Biodiversity

Biodiversity. Image Credit: Chinnapong/Shutterstock.com

DNA can be exploited in several ways to promote and conserve biodiversity: to monitor the state, geographical spread, and genetic diversity of endangered species; in investigative forensic activity to source endangered animal products and implicate the guilt of poachers and traders, and as a safety net against eventual extinction by the preservation of the genome of species.

Environmental DNA

Environmental DNA (eDNA) is obtained from environmental samples and can be utilized to monitor biodiversity and investigate ancient ecosystems. DNA is continuously shed into the environment by living creatures, in the form of skin cells, urine, feces, and hair, in addition to the remains left following death.

DNA can persist for a widely varying length of time in the environment, from weeks in temperate water to many thousands of years in dry frozen climates. PCR amplification and next-generation sequencing are utilized to sequence such DNA, searching for specific primers that can be multi-species if the DNA is unknown, or use a genetic primer for a particular group of organisms if the source is known.

A diverse range of plants and animals have been recognized through eDNA collected from cave sediments and permafrost containing DNA from tens or hundreds of thousands of years ago, and from aquatic sediments and freshwater reflecting the DNA of animals living in the present day.

eDNA allows researchers to track how changes in the environment affect species diversity, and to better understand how conservation efforts could be directed to better protect extant species. Currently, the recording of species number and biodistribution may encompass various invasive methods that demand the collection of DNA samples from living animals, while eDNA may present a non-invasive method of sequencing the genome of animals of concern.

Forensic DNA analysis

Forensic DNA analysis of endangered animals, plants, and products derived from them, is increasingly being employed in the fight against poaching and the black market animal trade. Cooked meat, hair, and skin collected from local markets is sequenced to prosecute poachers, and other products such as traditional East Asian medicines have been demonstrated to illegally contain products derived from endangered animals by DNA sequencing.

DNA sequencing has also played a forensic role in placing poachers and traders at the scene of the crime through blood sample evidence, and by demonstration of having acquired a mite infection in the country of goods origin. Similarly, the predators of endangered animals have been identified by DNA sequencing of the saliva left on the carcass.

The specific location of endangered animals and plants that are being illegally farmed can also be inferred by DNA sequencing, with local environmental conditions and nutrient availability influencing the genetic profile observed.

DNA tracking and storage

Animal species that are now very few in number in the wild, such as tigers, can potentially be entirely sequenced, with DNA testing being used to differentiate and track individuals across the whole species. This could allow conservationists to better identify sub-species, and aid the population by promoting genetic diversity and correcting for inbreeding, if necessary.

DNA databanks are under construction. These aim to preserve the DNA sequences of as many species as possible. They take the form of living conservation sites, seed and tissue/cell sample banks, and computer-based sequence storage. In the future, should DNA sequencing become as advanced as it seems likely to become, it will be possible to produce any organism from digitally stored or constructed DNA sequences.

Sources:

Further Reading

Last Updated: Jan 17, 2022

Michael Greenwood

Written by

Michael Greenwood

Michael graduated from the University of Salford with a Ph.D. in Biochemistry in 2023, and has keen research interests towards nanotechnology and its application to biological systems. Michael has written on a wide range of science communication and news topics within the life sciences and related fields since 2019, and engages extensively with current developments in journal publications.  

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Greenwood, Michael. (2022, January 17). Using DNA in Biodiversity Conservation. AZoLifeSciences. Retrieved on May 16, 2024 from https://www.azolifesciences.com/article/Using-DNA-in-Biodiversity-Conservation.aspx.

  • MLA

    Greenwood, Michael. "Using DNA in Biodiversity Conservation". AZoLifeSciences. 16 May 2024. <https://www.azolifesciences.com/article/Using-DNA-in-Biodiversity-Conservation.aspx>.

  • Chicago

    Greenwood, Michael. "Using DNA in Biodiversity Conservation". AZoLifeSciences. https://www.azolifesciences.com/article/Using-DNA-in-Biodiversity-Conservation.aspx. (accessed May 16, 2024).

  • Harvard

    Greenwood, Michael. 2022. Using DNA in Biodiversity Conservation. AZoLifeSciences, viewed 16 May 2024, https://www.azolifesciences.com/article/Using-DNA-in-Biodiversity-Conservation.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.