What is Genetics?

Genetics is the branch of biology concerned with the study of the DNA of organisms, how their DNA manifests as genes, and how those genes are inherited by offspring. Genes are passed to offspring in both sexual and asexual reproduction, and over time natural selection can accumulate variations amongst individuals on the group level, in the process known as evolution.

Genetics

Genetics. Image Credit: sokolova_sv/Shutterstock.com

History of Genetics

Ancient peoples from around the world recognized that a child inherited their appearance and propensity for certain personality traits from their parents, though could not demonstrate the mechanism without modern knowledge of atoms, molecules, and biochemistry.

Many of the theories developed at this time speculated that the semen of the father contained the “seed”, while the reflection of the mother’s personality may or may not have been present within the child, with her contribution being limited to bearing the child.

During the 4th century, BC Aristotle wrote several texts regarding the origin and history of animals, making numerous astute observations regarding the degree of relatedness between animals that would not be significantly expanded upon until the sixteenth or seventeenth centuries. He would also have purported the ancient Greek theory of the four humors, these being one of the few aspects that might be passed from parents to children.

The circumstances of conception and development were thought significantly more critical to the resulting traits of the child up until the end of the eighteenth century, and until Charles Darwin, in the mid-nineteenth, for heredity to emerge as a central problem in biology. At this point, the properties that an individual inherits became less separated from ones inherited on the species-level in the eyes of science, and modern 20th-century molecular biology generated a plethora of supporting information that confirmed the relationship between individual variation and evolution.

What are genes? | Animation | Minute to Understanding | The Jackson Laboratory

Inheritance

Inheritance refers to the passing of traits from one generation to the other, both by asexual and sexual reproduction. Gametes are the reproductive cells of an organism, which is sperm in males and ova in females. Each of these carries 23 of the 46 chromosomes needed to create a complete human genome, and come together to form a zygote.

Several mechanisms to develop genetic variation occur at each of these stages. Before the gametes are formed homologous chromosomes exchange genetic material, resulting in new combinations of genes on each chromosome. Then during the generation of the gametes by meiosis, the homologous chromosomes are distributed randomly, ensuring that each gamete is unique.

Since people possess a homologous pair of each chromosome, usually one from the father and one from the mother, many genes are presented twice. Variations in the sequence of these genes are called alleles, and differing alleles may interact in a variety of ways depending on the chromosome on which they are located, resulting in a wide range of phenotypic effects.

One allele may be dominant while the other is recessive, eye color often being cited, with the brown allele being dominant over the blue allele. This phenomenon has been modeled by the Punnett square for almost a century, before any real knowledge of DNA. As the square suggests, two parents of identical eye color are likely to replicate the color in their child, while a mixed coloring has a 25% chance of producing blue-eyed children.

In truth many genes are competing simultaneously and being expressed differentially, also impacted by post-transcriptional factors and epigenetics, making the precise phenotype expressed more difficult to predict when accounting for these subtleties.

Advances in genetic technology are opening new avenues in terms of personalized medicine, efficient and reliable diagnosis, and highly accurate predictions based on genetic determinants. Broad genetic testing can now be undertaken on a clinically relevant time scale, allowing most DNA-related disorders such as cancer to be specifically identified and combated.

Inheritance

Inheritance. Image Credit: fizkes/Shutterstock.com

Recent Developments in Genetics

However, many detailed links between genetic variants and phenotypes are still not fully understood, and the quantity of data generated by genome sequencing notably outstrips our ability to interpret it. Input from multiple disciplines is increasingly important to obtaining and interpreting such information, and many tools have been developed to capture relevant genomic sequences by classical laboratory and in-silico methods.

The Global Alliance for Genomics and Health predicts that over 60 million people will have had their genome sequenced in a medical context by 2025, and direct consumer testing for purposes other than immediate medical concerns is becoming increasingly popular as the general public becomes more interested in the predictive ability of genomic sequencing. Providers of these services promise insight into one's health and genetic ancestry, though many privacy concerns have been raised regarding this practice.

A recent analysis of these companies in the UK found that 15 did not comply with the UK Human Genetics Commission principles for good practice regarding consumer information. One such company based in the USA promised to identify an individual’s “genetic superpower”, and subsequently failed to recognize that a received sample was in fact sourced from a dog, suggesting that the customer would likely be talented at basketball.

Gene editing using CRISPR-Cas9 is now not only a reality in in vitro experiments but also in human subjects, as on November 25th 2018 He Jianku of the Southern University of Science and Technology, China, announced that two babies had been born with edited C-C chemokine receptor type 5 (CCR5) genes. This modification supposedly rendered the subjects immune to HIV infection, though the reasoning behind this has been challenged by many researchers in the field, and the research was considered risky and unethical in general. He has since been widely condemned for how the research was conducted and has lost his research post and been sentenced to prison time.

It is difficult to predict the moral standards of the future with regards to gene tailoring of children, though it is certain that it will be possible. If so, parents of the future may be able to choose which of their genes are inherited by their children, or even introduce entirely new traits into their genetic lineage.

Sources:

Further Reading

Article Revisions

  • Jan 4 2024 - A YouTube video has been integrated into the article to enhance engagement and provide a visual overview of the main concepts discussed. This update aims to support different learning styles and make the content more accessible.

Last Updated: Nov 4, 2024

Michael Greenwood

Written by

Michael Greenwood

Michael graduated from the University of Salford with a Ph.D. in Biochemistry in 2023, and has keen research interests towards nanotechnology and its application to biological systems. Michael has written on a wide range of science communication and news topics within the life sciences and related fields since 2019, and engages extensively with current developments in journal publications.  

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Greenwood, Michael. (2024, November 04). What is Genetics?. AZoLifeSciences. Retrieved on January 20, 2025 from https://www.azolifesciences.com/article/What-is-Genetics.aspx.

  • MLA

    Greenwood, Michael. "What is Genetics?". AZoLifeSciences. 20 January 2025. <https://www.azolifesciences.com/article/What-is-Genetics.aspx>.

  • Chicago

    Greenwood, Michael. "What is Genetics?". AZoLifeSciences. https://www.azolifesciences.com/article/What-is-Genetics.aspx. (accessed January 20, 2025).

  • Harvard

    Greenwood, Michael. 2024. What is Genetics?. AZoLifeSciences, viewed 20 January 2025, https://www.azolifesciences.com/article/What-is-Genetics.aspx.

Comments

  1. Angelica Cabral Angelica Cabral Philippines says:

    Thank you for this! It helped a lot. 😊

  2. Julyana Deleon Ponsoy Julyana Deleon Ponsoy Philippines says:

    hello may i know whats the date published f this?

  3. Mpule Monnaatsheko Mpule Monnaatsheko United States says:

    I read about genetics and it helped  a lot

  4. Juliet Jovial Juliet Jovial South Africa says:

    I read about this and it has enlighten me more, I still need more about this course Genetics

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.