Study could help understand how animals use information from environmental odors to guide behavior

The University of Colorado Boulder will lead a groundbreaking new international research network dubbed Odor2Action starting this fall.

The work is aimed at understanding how animals use information from odors in their environment to guide behavior, with far-ranging implications for our understanding of the human brain.

The network was announced August 17, 2020 as part of the Next Generation Networks for Neuroscience (NeuroNex) Program. Over the next five years, CU Boulder will be leading 16 scientists from 16 prestigious institutions around the world to better understand the brain and its evolution by reverse-engineering how it interprets odors.

The project is funded by a $20.2 million award from the National Science Foundation, the Canadian Institutes of Health Research and the UK Research and Innovation Medical Research Council.

The network will examine all the steps involved in how an odor stimulus gets encoded by the brain and then activates the motor circuits to produce a behavioral response in an animal. The model species they will work with to do this, like fruit flies and mice, will make headway in understanding these same steps in humans.

The chemical sensing process (i.e. smell) evolved in the very earliest life forms on Earth. The idea here is that all brain evolution has taken place in the presence of chemical sensing. And so it's thought to be a primal portal from which to view brain function."

John Crimaldi, Lead Principal Investigator and Professor, Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder

While Crimaldi and CU Boulder have previously received significant awards to research how animals find the source of an odor, this project is much broader and aims to understand the whole brain and the mechanism that goes into a behavioral response to smelling something.

Crimaldi said smell is the least understood sense and that humans have struggled to replicate odor-based searches with machines. Doing so, however, would allow robots to take over treacherous duties instead of humans or dogs, unlocking a new area of advancement for autonomous systems.

These robots could one day rescue a person buried in an avalanche, locate valuable natural resources, or find chemical weapons and explosives on their own, for example.

Keith Molenaar, interim dean of the College of Engineering and Applied Science, said the network was truly a special project and among the largest the college had ever been involved in.

He said the work would result in transformational research around our understanding of the brain that could also lead to cures for diseases that connect to our sense of smell--or even understanding why loss of smell is a symptom of some diseases like COVID-19 among many other areas and across many different fields.

"The fact that an engineer, Professor John Crimaldi, is leading a group of neuroscientists, mathematicians and biologists, speaks to the truly interdisciplinary nature of the research," Molenaar said.

The network is composed of three interdisciplinary research groups (IRGs) that form a loop in animal sensing and behavior. The first is focused on theoretical mathematics and mapping to better understand how the characteristics of smells are encoded in the brain.

The second builds on this and will determine how the encoded odors produce a behavioral response. The third group will investigate how this behavioral response alters the animals' perception of the odor it is sensing.

As an engineer, Crimaldi said he never expected to end up working in neuroscience but it turns out there's a lot of engineering involved in understanding what odors look like.

He currently studies fluid mechanics from a theoretical perspective; using lasers in a non-intrusive way to measure flows--like odors--through air and liquids.

He's looked at everything from why coral reproduction underwater is successful to how animals can tell where a smell is coming from.

"Life forms have evolved to take advantage of specific opportunities and constraints that are imposed by their physical environment," Crimaldi said.

"I like to say we don't just use physics to understand biology or ecology, or the brain. We also use evolutionary processes that have evolved in animals to help us understand details of what's going on in the physical world."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New Study Explores the Neural Basis of Response Inhibition