Novel matrix-based slow-release urea enhances nitrogen use efficiency in rice production

The applied nitrogen in crop production is easily lost through ammonia emission and nitrogen leaching. Therefore, many attempts have been made on the development of novel slow-release fertilizers to reduce nitrogen loss and improve crop production.

A research team led by Prof. WU Yuejin from the Institute of Intelligent Machines of the Hefei Institutes of Physical Science developed a novel matrix-based slow-release urea (MSU) recently to improve nitrogen use efficiency in rice production, and they assessed the performances of it.

MSU is a promising fertilizer for rice production, as less nitrogen loss and greater soil nitrogen availability can improve rice growth traits and physiological parameters in MSU."

WU Yuejin, Professor, Institute of Intelligent Machines, Hefei Institutes of Physical Science

In this research, the researchers combined the organic and inorganic matrix-materials to improve the performance of MSU. These matrix-materials showed high adsorption and flocculation capacity, leading to the good slow-release performance of the MSU. Additionally, the matrix-materials contained available iron and sulfur, which promoted the nutritional balance of rice.

Consequently, application of the MSU increased agronomic nitrogen efficiency by 58%-64% and rice yield by 18%-21%.

"We have trust on a broad prospect for environment-friendly and efficient rice production of MSU," said YANG Yang, a researcher in the team.

Source:
Journal reference:

YANG, Y., et al. (2021) Rice productivity and profitability with slow-release urea containing organic-inorganic matrix materials. Pedosphere. doi.org/10.1016/S1002-0160(21)60001-2.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Hepatitis E Virus Impairs Neuronal Cells, Reducing Neurite Length