Understanding microorganisms' ability to convert CO2 into sustainable fuel

A more green and sustainable society requires the development of new technologies to deal with the ever-increasing emissions of CO2. Fossil fuels are a vital component of our society, and it is therefore crucial that we develop sustainable alternatives.

Methane is a highly sought-after product, as it is already used as a fuel in many processes and it has potential to replace other fuels in the transport sector or be converted into other valuable chemical products. Moreover, methane can be stored and transported via existing infrastructure.

However, producing methane at scale so that it is both sustainable and economically attractive for the industry is not without its challenges. Three researchers are now trying to solve this problem in the ReMeSh research project, which recently received a grant of almost DKK 5 million from the Novo Nordisk Foundation.

A clear strength of the project is that we come with three very different backgrounds and disciplines and have different perspectives on the same issue. This means that we have come up with a unique model that we now aim to examine in more detail."

Michael Vedel Wegener Kofoed, Researcher, Department of Biological and Chemical Engineering, Aarhus University

Electricity in CO2 reduction

In addition to Michael Vedel Wegener Kofoed, the group of researchers consists of Professor Anders Bentien, head of section at the Department of Biological and Chemical Engineering at Aarhus University and Professor Jeppe Lund Nielsen from the Department of Chemistry and Bioscience at Aalborg University.

"The ReMeSh project combines knowledge and methods from electrochemistry and microbiology to increase the conversion of CO2 into methane by means of microorganisms. Among other things, we'll examine how electrical power can be used in CO2 reduction in bio-electrochemical systems. The aim is to generate knowledge to develop a new technology that can produce sustainable fuel while also addressing society's CO2 problems," says Anders Bentien.

A boost for methane production

It has previously been shown that microorganisms can convert CO2 into methane in a bioreactor using electrons from green electricity. The ReMeSh project will develop a more efficient method of converting CO2 from industrial sources, like biogas for example, so that it can be used in the natural gas grid.

The hypothesis for ReMeSh is that, using certain molecules, it could be possible to accelerate the transfer of electrons to the microbes in the bioreactor, so that the process becomes much more efficient.

"We hope to pave the way for new technologies within bio-electrochemical CO2 conversion and to accelerate the conversion of CO2 into methane. The vision is to make it 1,000-times faster than today," says Anders Bentien.

"However, developing such technology requires expertise from all three areas of scientific and technical research that we researchers represent," adds Michael Vedel Wegener Kofoed.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
3D Tumor Microenvironment Model Highlights Role of Ischemia and Acidification in Cancer Spread