'Enabler cells' in tumors could promote cancer metastasis

Just a small number of cells found in tumors can enable and recruit other types of cells nearby, allowing the cancer to spread to other parts of the body, report Georgetown Lombardi Comprehensive Cancer Center scientists. Working with their research collaborators, the scientists found that 'enabler cells' comprise about 20 percent or less of the cells in an aggressive tumor; their small numbers may account for why they are often missed when bulk tissue analyses are used to inform therapeutic decisions.

The finding appears online June 16, 2021, in Cancer Research, a journal of the American Association for Cancer Research. "Our novel finding goes beyond the common understanding of cancer progression as one modeled on Darwinian selection where 'survival of the fittest' means the predominant type of cell in a tumor dictates its outcome," noted Anna Riegel, PhD, Professor of Oncology and Pharmacology at Georgetown Lombardi and the corresponding author of the study. "This could have major implications for our understanding of how best to diagnosis and treat certain cancers as blocking key cancer-promoting subpopulations of cells might be a way to defeat the cancer."

The advent of advanced gene sequencing technology coupled with the use of CRISPR, a tool that allows for easy gene editing, made this finding possible; it is a collaborative effort with researchers at The Ohio State University and Hackensack University Medical Center's John Theurer Cancer Center, a part of Georgetown Lombardi Comprehensive Cancer Center. These tools aided the scientists in building on their knowledge of alternative splicing, or cutting, of genes whereby a single gene can be spliced to code for multiple proteins.

The researchers' work using CRISPR in both zebrafish and mice zeroed in on cell subpopulations responsible for enabling metastasis. This led researchers to the discovery of a single RNA splicing event in the AIB1 (amplified in breast cancer 1) gene. One splice variant of the gene produced the AIB1-Delta4 protein, which was found to be responsible for promoting communication and recruitment of surrounding cells, eventually leading to metastasis.

We propose that the detection of these enabler cells in early-stage breast cancers could predict which tumors are more aggressive and destined to metastasize. Therapeutic targeting of vulnerabilities uncovered in the enabler cells, such as the splice variants, could represent a new approach to preventing malignant progression of breast cancer."

Ghada M Sharif, PhD, Research Assistant Professor at Georgetown Lombardi and First Author

This finding is particularly relevant in triple-negative breast cancers which can be aggressive and hard to treat. These types of cancer usually start as non-malignant tumors, called ductal carcinoma in situ (DCIS), but in about 5 to 10 percent of women, they can quickly progress to malignant tumors. The investigators found that AIB1-Delta4 is found at increased levels in women with higher-risk DCIS.

The researchers' next step will be to conduct various single cell analyses in human tissue samples. "We are at a turning point in how we analyze tumor samples," said Riegel. "It was unthinkable and impractical just a few years ago to look at every single cell in a tissue sample. But technology is racing ahead and we believe that in the next few years, looking at each cell will allow us to determine which cells, even if they are small in number, are truly driving cancer progression."

Source:
Journal reference:

Sharif, G.M., et al. (2021) An AIB1 isoform alters enhancer access and enables progression of early stage triple-negative breast cancer. Cancer Research. doi.org/10.1158/0008-5472.CAN-20-3625.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Cancer-Causing Mutations Found in Healthy Breast Tissue