New chemical could help reluctant seeds to spring to life

Seeds that would otherwise lie dormant will spring to life with the aid of a new chemical discovered by a UC Riverside-led team.

Plants have the ability to perceive drought. When they do, they emit a hormone that helps them hold on to water. This same hormone, ABA, sends a message to seeds that it isn't a good time to germinate, leading to lower crop yields and less food in places where it's hot -; an increasingly long list as a result of climate change.

If you block ABA, you mess with the chemical pathway that plants use to prevent seed germination. Our new chemical, Antabactin, does exactly this. If we apply it, we have shown that dormant seeds will sprout."

Aditya Vaidya, UCR project scientist and study author

Demonstrations of Antabactin's effectiveness are described in a new paper published in the Proceedings of the National Academy of Sciences.

This work builds on the same team's creation of a chemical that mimics the effects of the ABA hormone, produced by plants in response to drought stress. That chemical, Opabactin, slows a plant's growth so it conserves water and doesn't wilt. It works by inducing plants to close tiny pores in their leaves and stems, which prevents water from escaping.

Next, the team wanted to find a molecule that would have the opposite effect, opening the pores, encouraging germination and increasing plant growth. Though seed dormancy has largely been removed through breeding, it is still a problem in some crops like lettuce.

Sean Cutler, a UCR plant cell biology professor and study co-author, said accelerating and slowing plant growth are important tools for farmers. "Our research is all about managing both of these needs," he said.

To find Opabactin's opposite, Vaidya quickly made 4,000 derivatives of it. "He found a needle in the chemical haystack," Cutler said, "The compound he created blocks receptors to ABA, and is unusually potent."

In their paper, the team members showed that applying Antabactin to barley and tomato seeds accelerated germination. Conceivably, both Antabactin and Opabactin could work together to help crops flourish in a world becoming drier and hotter.

Once Antabactin has helped seeds sprout into healthy plants, a farmer might start saving water early in the growing season by spraying Opabactin. This way, enough water is "banked" for when the plants start flowering.

"Just like a woman requires higher levels of nutrition during pregnancy, plants require more water and nutrition when they're flowering and about to bear fruits," Vaidya said. "This is true for most crops, especially for economically relevant crops like corn and wheat."

The research team continues to investigate variations in seed dormancy induced by ABA in a variety of other plant species. They also want to examine Antabactin's use as a chemical tool to increase plant growth in greenhouse settings where water isn't limited.

"We hope to identify key molecular players that govern seed dormancy, ultimately reducing the impact of lost crop yields due to unfortunately timed plantings or poor seed germination," Vaidya said.

Source:
Journal reference:

Vaidya, A.S., et al. (2021) Click-to-lead design of a picomolar ABA receptor antagonist with potent activity in vivo. PNAS. doi.org/10.1073/pnas.2108281118.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
3D Tumor Microenvironment Model Highlights Role of Ischemia and Acidification in Cancer Spread