Machine learning can predict the biological properties of Earth's most abundant enzyme

A Newcastle University study has for the first time shown that machine learning can predict the biological properties of the most abundant enzyme on Earth - Rubisco.

Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) is responsible for providing carbon for almost all life on Earth. Rubisco functions by converting atmospheric CO2 from the Earth's atmosphere to organic carbon matter, which is essential to sustain most life on Earth.

For some time now, natural variation has been observed among Rubisco proteins of land plants and modelling studies have shown that transplanting Rubisco proteins with certain functional properties can increase the amount of atmospheric CO2 crop plants can uptake and store.

Study lead author, Wasim Iqbal, a PhD researcher at Newcastle University's School of Natural and Environmental Sciences, part of Dr Maxim Kapralov's group, developed a machine learning tool which can predict the performance properties of numerous land plant Rubisco proteins with surprisingly good accuracy. The hope is that this tool will enable the hunt for a 'supercharged' Rubisco protein that can be bioengineered into major crops such as wheat.

Published in the Journal Of Experimental Botany, the study presents a useful tool for screening and predicting plant Rubisco kinetics for engineering efforts as well as for fundamental studies on Rubisco evolution and adaptation. Screening the natural diversity of Rubisco kinetics is the main strategy used to find better Rubiscos for crop engineering efforts.

Our study will have huge implications for climate models and bioengineering crops.

This study provides plant biologists with a pre-screening tool for highlighting Rubisco species exhibiting better kinetics for crop engineering efforts.

The machine learning tool can be used to improve the accuracy of global photosynthesis estimates. The Rubisco performance properties our model predicts are compatible with Earth system models (ESM) used by climate scientists. Currently, ESMs use a single set of Rubisco properties from the same species (or sometimes a handful) for estimating photosynthesis at the ecosystem scale. Our machine learning tool could provide predictions for most land plants improving the accuracy of ESMs."

Wasim Iqbal, PhD Researcher, Newcastle University's School of Natural and Environmental Sciences

Next steps of this work include isolating the best Rubisco proteins identified from predictions in the lab and attempting to bioengineer a plant species with a foreign Rubisco protein.

Source:
Journal reference:

Iqbal, W., et al. (2022) Predicting plant Rubisco kinetics from RbcL sequence data using machine learning. Journal Of Experimental Botany. doi.org/10.1093/jxb/erac368.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Newcastle University. (2022, November 15). Machine learning can predict the biological properties of Earth's most abundant enzyme. AZoLifeSciences. Retrieved on October 30, 2024 from https://www.azolifesciences.com/news/20221003/Machine-learning-can-predict-the-biological-properties-of-Earths-most-abundant-enzyme.aspx.

  • MLA

    Newcastle University. "Machine learning can predict the biological properties of Earth's most abundant enzyme". AZoLifeSciences. 30 October 2024. <https://www.azolifesciences.com/news/20221003/Machine-learning-can-predict-the-biological-properties-of-Earths-most-abundant-enzyme.aspx>.

  • Chicago

    Newcastle University. "Machine learning can predict the biological properties of Earth's most abundant enzyme". AZoLifeSciences. https://www.azolifesciences.com/news/20221003/Machine-learning-can-predict-the-biological-properties-of-Earths-most-abundant-enzyme.aspx. (accessed October 30, 2024).

  • Harvard

    Newcastle University. 2022. Machine learning can predict the biological properties of Earth's most abundant enzyme. AZoLifeSciences, viewed 30 October 2024, https://www.azolifesciences.com/news/20221003/Machine-learning-can-predict-the-biological-properties-of-Earths-most-abundant-enzyme.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Ancient and historical DNA data likely to guide conservation efforts