Climate change likely to help mosquitoes reach colder parts of the continent

Based on data that span the past 120 years, scientists at Georgetown University Medical Center have found that the mosquitoes responsible for transmitting malaria in Africa are spreading deeper into southern Africa and to higher elevations than previously recorded. The researchers estimate that Anopheles mosquito populations in sub-Saharan Africa have gained an average of 6.5 meters (21 feet) of elevation per year, and the southern limits of their ranges moved south of the equator by 4.7 kilometers (nearly 3 miles) per year.

The study appeared February 15, 2023, in Biology Letters.

This is exactly what we would expect to see if climate change is helping these species reach colder parts of the continent. If mosquitoes are spreading into these areas for the first time, it might help explain some recent changes in malaria transmission that have otherwise been hard to trace back to climate."

Colin Carlson, Study Lead Author and Assistant Research Professor, Center for Global Health Science and Security, Georgetown University Medical Center

The world is at least 1.2 degrees Celsius (about 2 degrees Fahrenheit) warmer than in the pre-industrial period. In 2011, scientists estimated that earth-bound species were moving uphill at a rate of 1.1 meters per year, and to more polar latitudes at 1.7 kilometers per year, making the movement of mosquitoes a relatively fast shift by comparison.

The investigators focused on mosquitoes in the genus Anopheles both because of their ability to spread malaria, and because of a unique historical dataset tracking their movements. Carlson notes that other species are probably moving in similar ways, but that future research efforts will have to get a sense of what's happening in different regions or with different diseases to gain the most comprehensive picture possible.

"We tend to assume that these shifts are happening all around us, but the evidence base is fairly limited," says Carlson. "If we're reimagining bio-surveillance for life on a hotter planet, a big part of that is going to have to be keeping an eye on animal movement."

Carlson notes that his team has been learning a lot about long-term biodiversity change thanks to deep historical public health records. "We know so little about how climate change is affecting invertebrate biodiversity. Public health is giving us a rare window into how some insects might be thriving in a changing climate-;even if it's bad news for humans."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI Tool Predicts Gene Activity from Tumor Images to Guide Treatment