Study identifies cell type crucial for successful immunotherapies for chronic viral infections

An international study led by researchers from the Infection Biology Laboratory at the UPF Department of Medicine and Life Sciences (MELIS) establishes that one type of dendritic cells is crucial for the success of immunotherapeutic treatments to control chronic viral infections. These dendritic cells have been found to be key in reactivating exhausted lymphocytes responsible for clearing infected cells to keep the viral load low.

Chronic viral infections, such as those caused by human immunodeficiency virus (HIV) or hepatitis B and C viruses, are characterized by a persistent viral load. This is maintained by a balance between the expansion of the virus and the expansion of exhausted T lymphocytes, which, once the viral load increases, become active, multiply and eliminate infected cells.

In HIV-infected patients, infection has been controlled with antiviral therapy that reduces the viral load to below detectable levels. However, this is transitory, as the viral load increases dramatically when treatment is stopped. With 650,000 people worldwide dying from HIV and 1.5 million acquiring the virus each year, there is a need to find a functional cure that controls the virus without causing disease and avoids the side effects and burden on health systems that antiviral therapy entails. Hence, immunotherapies based on checkpoint inhibitors that block proteins that prevent the immune system from attacking infected cells, are considered a promising therapy.

The study published in Cell Reports determines that the various types of dendritic cells differ in their ability to reactivate exhausted lymphocytes during checkpoint immunotherapy. It also identifies XCR1+ cross-presenting dendritic cells as key elements that trigger exhausted lymphocyte reactivation in checkpoint inhibitor-based immunotherapies. Therefore, XCR1+ cross-presenting dendritic cells are a promising therapeutic target to improve virus control during chronic viral infection.

The study, performed in a mouse model of the chronic lymphocytic choriomeningitis virus -that partly resembles human chronic HIV and hepatitis virus infections-, opens the possibility of considering combination immunotherapies including checkpoint inhibitors that target cross-presenting dendritic cells as an interesting therapy option for HIV-infected individuals.

Our findings are an important step forward in understanding the requirements for cure strategies in chronic infections."

Eva Domenjo, first author of the manuscript

"The next steps now are to improve the duration of the therapeutic benefits and translate the data from the model system to the clinical practice", adds Andreas Meyerhans, who coordinated the work together with Jordi Argilaguet.

Considering analogous findings in cancer immunotherapy, this not only argues for immunological similarities between chronic infections and cancers but also gives hope for a timely translation into clinical applications.

Source:
Journal reference:

Domenjo-Vila, E., et al. (2023) XCR1+ DC are critical for T cell-mediated immunotherapy of chronic viral infections. Cell Reports. doi.org/10.1016/j.celrep.2023.112123.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Stem-Like CD4 T Cells Could Transform Cancer Treatment Strategies