Anthrax is an acute infectious disease caused by the spore-forming bacterium Bacillus anthracis. Anthrax most commonly occurs in wild and domestic lower vertebrates (cattle, sheep, goats, camels, antelopes, and other herbivores), but it can also occur in humans when they are exposed to infected animals or tissue from infected animals.
Anthrax is most common in agricultural regions where it occurs in animals. These include South and Central America, Southern and Eastern Europe, Asia, Africa, the Caribbean, and the Middle East. When anthrax affects humans, it is usually due to an occupational exposure to infected animals or their products. Workers who are exposed to dead animals and animal products from other countries where anthrax is more common may become infected with B. anthracis (industrial anthrax). Anthrax outbreaks occur in the United States on an annual basis in livestock and wild game animals such as deer.
Anthrax infection can occur in three forms: cutaneous (skin), inhalation, and gastrointestinal. B. anthracis spores can live in the soil for many years, and humans can become infected with anthrax by handling products from infected animals or by inhaling anthrax spores from contaminated animal products. Anthrax can also be spread by eating undercooked meat from infected animals. It is rare to find infected animals in the United States.
Solving a riddle that has confounded biologists since bacterial spores -; inert, sleeping bacteria -; were first described more than 150 years ago, researchers at Harvard Medical School have discovered a new kind of cellular sensor that allows spores to detect the presence of nutrients in their environment and quickly spring back to life.
Each year, about 500,000 people in the U.S. deal with gastrointestinal infections from Clostridioides difficile (C. diff), and more than 20,000 die from these infections.
Shine a laser on a drop of blood, mucus, or wastewater, and the light reflecting back can be used to positively identify bacteria in the sample.
When exposed to starvation and stress, certain bacteria enter a dormant state in which life functions cease. These cells, known as spores, can resist punishing extremes of heat, pressure, and even the extreme conditions of outer space by entering a profound hibernation.
Anthrax-causing spores were mailed to news outlets and members of Congress during the “Amerithrax” strikes of 2001, inflicting at least 22 illnesses and leaving five people dead.
Working with tiny bacteria, Michigan State University researchers led by Lee Kroos have made a discovery that could have big implications for biology.
To gain a better understanding of how bacterial RNA gives rise to proteins scientists are now focusing on the special way this process takes place in bacteria.
How can we prevent the novel coronavirus from invading a host cell in an attempt to prevent infection?
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.