Researchers identify new pathway that targets common vulnerability in different pandemic viruses

Researchers working in human cells have identified a new pathway that targets a common vulnerability in several different pandemic viruses. This pathway can protect cells from infection by Ebola virus and from coronaviruses like SARS-CoV-2, they say. Their new findings, uncovered by an innovative screening approach, may inform future therapies against a broad range of viruses.

Recent and ongoing outbreaks of Ebola virus in Africa and the SARS-CoV-2 pandemic globally highlight the need to identify additional treatment strategies for viral infections. Therapies that focus on host pathways of cellular resistance to viruses, and that target common vulnerabilities across multiple viruses, are of particular interest, but finding these pathways has been difficult using conventional genetic screens.

Here, Anna Bruchez and colleagues used a novel screening approach based on activation of chromosomal segments called transposons to look for new genes that can prevent infection by Ebola virus.

This screening strategy uncovered that the gene MHC class II transactivator (CIITA) induces resistance to Ebola virus in human cell lines by activating the expression of a second gene, CD74. One isoform of CD74, known as p41, disrupts the processing of proteins on the coat of the Ebola virus protein by cellular proteases called cathepsins.

This prevents entry of the virus into the cell and subsequent infection. In further research using human cell lines, Bruchez and colleagues showed that CD74 p41 also blocked the cathepsin-dependent entry pathway of coronaviruses, including SARS-CoV-2.

The results reveal a new role for the two genes identified, which likely came before their better-known role in antigen processing, the authors say. They write:

We anticipate that the application of this transposon screening approach to other models of infection will reveal other mechanisms that have eluded conventional screening strategies."

Source:
Journal reference:

Bruchez, A., et al. (2020) MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses. Science. doi.org/10.1126/science.abb3753.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
BOOSTER Gene: Unlocking New Potential in Photosynthesis and Crop Productivity