Research sheds light on T cell abnormality in critically ill COVID-19 patients

There is an idea within the coronavirus research field that there is some kind of T cell abnormality in critically ill COVID-19 patients, but specific details have not yet been clarified. To shed light on the problem, a research collaboration based in Kumamoto University (Japan) has performed a genetic analysis of T cells from lung tissue of COVID-19 patients.

Their work revealed abnormalities in T cells that resulted in overactivation that may cause severe pneumonia. The researchers believe that their findings will lead to new ways of avoiding severe pneumonia caused by coronavirus infections.

COVID-19 continues to have an enormous impact on daily lives. Why some people become severely ill while the majority of those infected are asymptomatic or very mildly ill is still a major unanswered question. Risk factors for severe disease include old age, diabetes, obesity, and hypertension.

We also know that critically ill patients experience an increase in inflammation factors (inflammatory cytokines) and immune system overreaction, whereas the number of T cells, the "command centers" for immune cells, is significantly reduced in the blood. However, the medical implications of these findings are still unclear.

T cells regulate the activity of the immune system by recognizing specific viruses. They also play important roles in virus elimination and the acquisition of immunity.

In this study, researchers focused on T cells to determine the causes of severe pneumonia in COVID-19. CD4+ T cells (helper T cells) work to eliminate viruses from the body by promoting the maturation and activation of cytotoxic T cells, which attack virus-infected cells, and B cells, which produce antibodies.

On the other hand, when some CD4+ T cells become highly activated, they express the transcription factor FoxP3 and become regulatory T cells which then act as brakes to inhibit T cell responses. This research analyzed genetic data from bronchoalveolar lavage fluids from the lungs of patients with COVID-19 from Wuhan, China to characterize the activity and genetic characteristics of the CD4+ T cells present.

Using state-of-the-art bioinformatics techniques, they found that while T cells were markedly activated in the lungs of patients with severe pneumonia, the induction of FoxP3 was inhibited and the T cell braking function stopped working. While T-cell activities are usually balanced between accelerating and braking, one of the most important brakes was not functioning in severe COVID-19 which may have led to severe pneumonia.

This study has clarified the association between severe pneumonia and T cell abnormalities. We expect that these findings will lead to a better understanding of the mechanisms of severe pneumonia in patients with COVID-19. A more detailed understanding of the pathogenesis based on this research may contribute to the development of drugs to prevent the development of severe COVID-19 and to diagnose the risk of severe disease."

Masahiro Ono, Study Leader and Associate Professor, Kumamoto University

This research was published online in Frontiers in Immunology on 8 October 2020.

Source:
Journal reference:

Kalfaoglu, B., et al. (2020) T-Cell Hyperactivation and Paralysis in Severe COVID-19 Infection Revealed by Single-Cell Analysis. Frontiers in Immunology. doi.org/10.3389/fimmu.2020.589380.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scalable Approach to Uncover Biological Discoveries from Single-Cell Data