Cell cycle of cancer cells can be disrupted using two commercially available inhibitors

With two commercially available inhibitors, the cell cycle of the cancer cells in the childhood tumor neuroblastoma can be disrupted at a key point causing tumor cell death.

Neuroblastomas are malignant solid tumors that occur mainly in early childhood. They arise from degenerated immature cells of the sympathetic nervous system.

One prognostic marker to assess the malignancy of the tumor is the MYCN oncogene. High-risk neuroblastoma patients often have amplification of MYCN, i.e. very high levels of this protein, which drives uncontrolled tumor growth. Conversely, inhibiting MYCN or its function could be a promising therapeutic opportunity.

An important step towards this direction was taken by an international research project led by scientists from Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, which was recently published in the journal Nature Cancer.

News about the role of MYCN in the cell cycle

Until now, it was known that MYCN controls the function of RNA polymerase. This reads the DNA in the cell nucleus and converts it into mRNA. Through our research, we were able to show that MYCN also plays a specific role during the S phase of the cell cycle, when DNA is also duplicated."

Dr Gabriele Büchel, Study Co-Lead Author, Chair of Biochemistry and Molecular Biology, Julius-Maximilians-Universität Würzburg

In this phase, therefore, two processes take place simultaneously: the reading and replication of DNA. Figuratively speaking, according to Gabriele Büchel, "two trains are on the same track".

Goal: Promote transcription-replication conflicts

Together with the doctoral student Isabelle Roeschert, she found out that MYCN prevents collisions of the two trains - so-called transcription-replication conflicts.

This signaling effect requires the two enzymes Aurora-A and ATR, both of which can be inhibited with existing pharmaceuticals. In this way, targeted "train collisions" can be induced to damage the tumor cell. Or in medical terms: the combination of both drugs leads to DNA damage and cell death - highly specifically in tumors, while other tissues remain unaffected.

"In mouse models of neuroblastoma, we were able to achieve tumor growth regression using this strategy. Some of the experimental animals could be even cured with the combinational treatment", Gabriele Büchel clarifies the effect of this "therapy".

Clinical trials already on the horizon

According to her, patients could also benefit from the knowledge gained in the near future. "The substances we use are all already commercially available. Aurora A and ATR inhibitors as well as the combinations we use are currently being tested in a number of practical models which are closer tot he clinic. If they are successful there, clinical trials could start soon," Büchel announces.

Source:
Journal reference:

Roeschert, I., et al. (2021) Combined inhibition of Aurora-A and ATR kinases results in regression of MYCN-amplified neuroblastoma. Nature Cancer. doi.org/10.1038/s43018-020-00171-8.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
A revolutionary antibody approach to fight cancer by restoring cellular fitness