Researchers discover nucleotide sequences characteristic of microRNA isoforms

Researchers from HSE University have discovered nucleotide sequences characteristic of microRNA isoforms (microRNAs with errors). The discovery will help predict errors in microRNA behavior and create drugs that can detect targets (such as viruses) more effectively. The results of the study have been published in the RNA Biology journal.

MicroRNAs (miRNAs) are very small molecules that regulate all the processes in a cell, including the transformation of inherited information in RNA or proteins (gene expression). Each microRNA has its own unique set of targets--genes whose activity it can suppress. Recent studies show that even slight changes in microRNA nucleotide sequences (so-called microRNA isoforms or isomiRs) can completely rebuild numerous targets. This can drastically alter the biological function of the molecule. However, until recently, researchers did not know why some microRNAs have isoforms, while others do not.

HSE Faculty of Biology and Biotechnology researchers Anton Zhiyanov, Stepan Nersisyan, and Alexander Tonevitsky applied bioinformatics methods to find the answer to this question. The team managed to create an algorithm that characterizes the fundamental differences between microRNAs that have isoforms and those that do not.

Their study also has important applications for the creation of artificial molecules similar to microRNAs. Dozens of research teams across the globe are currently working to solve this problem. Researchers artificially synthetize molecules that are similar to microRNAs (so-called short hairpin RNAs or shRNAs) in order to 'knock down' the gene they are interested in. In addition to having academic applications, this technology is also used in therapy to suppress 'bad' genes that cause diseases.

The authors of the study demonstrated that such artificially synthetized molecules can also have isoforms.

Some combinations of nucleotides (AGCU, AGUU) are most often found in microRNAs where no errors occur. Combinations such as CCAG and some of its variations can predict changes and target failure with up to 70% precision. Sequencing short hairpin RNAs from our own experiments revealed that they also have isoforms. This means that it is possible to have a situation where we invent a molecule with a specific list of targets, but in practice, isoforms appear with unintended targets of their own. Our algorithm helps predict such events at the computer analysis stage without having to carry out costly experiments."

Stepan Nersisyan, Junior Research Fellow, HSE International Laboratory of Microphysiological Systems

Source:
Journal reference:

Zhiyanov, A., et al. (2021) Hairpin sequence and structure is associated with features of isomiR biogenesis. RNA Biology. doi.org/10.1080/15476286.2021.1952759.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Ancient Protist May Hold Clues to Evolution of Multicellular Life