New research identifies a master timekeeper for the brain's circadian clock

A gene called Npas4, already known to play a key role in balancing excitatory and inhibitory inputs in brain cells, appears to also be a master timekeeper for the brain's circadian clock, new research led by UT Southwestern scientists suggests.

The finding, published online today in Neuron, broadens understanding of the circadian clock's molecular mechanisms, which could eventually lead to new treatments for managing challenges such as jet lag, shift work, and sleep disorders.

To reset the circadian clock, you ultimately need to reset its molecular gears. This study suggests that Npas4 might be one of the most important components for resetting the clock to light."

Joseph S. Takahashi, Ph.D., Study Lead, Professor and Chair of Neuroscience, UT Southwestern Medical Center

For decades, researchers have known that a brain region called the suprachiasmatic nucleus (SCN) is responsible for controlling circadian rhythms, the various cycles of activity that typically run on a 24-hour basis. These rhythms are entrained by light, Dr. Takahashi explained; cells in the SCN respond to signals relayed by the retina, the eye's light-sensitive tissue. However, the molecular basis of this phenomenon is not well understood.

To better understand how the SCN sets circadian rhythms, the researchers used a technique called single-nucleus sequencing to look at gene activity in individual cells in mice after the animals were exposed to light. Dr. Takahashi and his colleagues found that three different subpopulations of SCN neurons respond to light stimulation. A common thread tying these subtypes together was increased activity in genes that respond to neuronal PAS domain protein 4 (NPAS4), the protein made by the Npas4 gene.

When Dr. Takahashi and his colleagues exposed mice engineered to lack Npas4 to light, it dampened the response of hundreds of circadian clock genes. In addition, the animal's circadian period lengthened about an extra hour, to nearly 25 hours instead of the normal 24. Together, these results suggest that Npas4 is a master regulator of many light-induced genes, a key piece in the puzzle of how the circadian system works, Dr. Takahashi said.

The more researchers learn about the molecular underpinnings of the circadian clock, Dr. Takahashi added, the more they may be able to manipulate it to improve health and well-being – for example, to ease jet lag or help shift workers stay awake or asleep to match their work cycles. It could also lead to new treatments for disorders marked by abnormal sleep/wake cycles.

Source:
Journal reference:

Xu, P., et al. (2021) NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron. doi.org/10.1016/j.neuron.2021.07.026.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New Mechanism for Precise Protein Production Unveiled