Researchers map the cellular landscape in diabetic foot ulcers

Diabetic foot ulcerations – open sores or wounds that refuse to heal – are a devastating complication affecting more than 15 percent of people with diabetes and resulting in more than 70,000 lower extremity amputations per year in the United States alone. Notably, more than half of patients undergoing amputations due to diabetic foot ulcerations are expected to die within five years-;a mortality rate higher than most cancers. Yet, the biological processes at work in diabetic foot ulcerations are poorly understood.

To gain a better understanding of what causes diabetic foot ulcers and how they might be treated, researchers at Beth Israel Deaconess Medical Center (BIDMC) and the Emory School of Medicine compared cells taken from patients with ulcers that healed to those taken from patients whose ulcers failed to heal, as well as to cells taken from intact forearm skin in patients with and without diabetes. The scientists mapped the cellular landscape in the diabetic foot ulcers of healers and non-healers using a leading-edge technology known as single-cell RNA-sequencing analysis, which provides deep insight into cell function and the development of disease by revealing gene expression in individual cells in tissues comprised of various cell types.

Various cell types, including endothelial cells, fibroblasts, keratinocytes and immune cells, play an important role in the wound healing process but little is understood about their involvement in impaired wound healing in diabetic foot ulcers. We have now substantially expanded the number of cells sequenced and gained novel insights into diabetic foot ulcers. Our data suggests that specific fibroblast subtypes are key players in healing these ulcers and targeting these cells could be one therapeutic option. While further testing is needed, our data set will be a valuable resource for diabetes, dermatology and wound healing research and can serve as the baseline for designing experiments for the assessment of therapeutic interventions."

Aristidis Veves, DSc, MD, co-corresponding author, director of the Rongxiang Xu, MD, Center for Regenerative Therapeutics and research director of the Joslin-Beth Israel Deaconess Foot Center

This work was funded in part by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). To see a complete list of funders, coauthors and disclosures, read the full study published in Nature Communications.

Source:
Journal reference:

Theocharidis, G., et al. (2022) Single cell transcriptomic landscape of diabetic foot ulcers. Nature Communications. doi.org/10.1038/s41467-021-27801-8.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
A New Method to Reprogram Plant Cells Offers Insights into Cell Wall Development