CSHL researchers spotlight the role of a previously little-known protein in leukemia

Acute myeloid leukemia (AML) is an aggressive cancer of white blood cells with few effective targeted therapies available to treat it. Cold Spring Harbor Laboratory (CSHL) Professor Christopher Vakoc and former graduate student Sofya Polyanskaya found that AML cells rely on a previously little-known protein called SCP4 for survival. Their discovery points to a potential new therapeutic approach for this disease.

SCP4 is a phosphatase, a type of protein that regulates cell activity by taking phosphates off other proteins. Another type of protein called a kinase puts those phosphates back on. The number of phosphates added to or subtracted from a protein-; its phosphorylation level-; determines its activity. Polyanskaya discovered that SCP4 could pair with either one of two similar kinases called STK35 and PDIK1L. AML cells appear to need the phosphatase and kinases to work together to survive; turning off the gene that produces SCP4 kills the cancer cells.

Polyanskaya was surprised to find only 12 papers in the scientific literature that even mention SCP4. Of those papers, none discussed a role for these proteins in cancer. She says:

When you encounter something that was never previously studied in the context of cancer or hasn't been understood at all, it's very interesting."

Sofya Polyanskaya, former graduate student

The researchers think SCP4 may control an important metabolic pathway on which AML cells depend. Drugs directed against SCP4 could starve and kill the cancer cells while allowing other healthy blood cells to grow. Fortunately, other phosphatases have been successfully targeted by drugs before.

Polyanskaya admits that deciding to study SCP4 was risky. But now that its important role in AML cells has been discovered, Polyanskaya says, "Other researchers can use this system and tweak some other things to really try and pinpoint the exact pathway. This work underscores the importance of fundamental research for discovering future therapies."

Source:
Journal reference:

Polyanskaya, S.A., et al. (2022) SCP4-STK35/PDIK1L complex is a dual phospho-catalytic signaling dependency in acute myeloid leukemia. Cell Reports. doi.org/10.1016/j.celrep.2021.110233.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study Shows How Genetic Variations Can Enhance Cancer Drug Effectiveness