Researchers identify changes in gene expression and cellular interactions in COPD lung cells

Researchers at Baylor College of Medicine, Yale University and other institutions have identified previously unrecognized changes in gene expression and cellular interactions in distinct cell populations in chronic obstructive pulmonary disease (COPD). The findings highlight the complexity and diversity of cellular injury and inflammation in COPD providing a better understanding of the factors and processes involved in the disease.

Published in Nature Communications, the study used single-cell RNA sequencing to analyze gene expression profiles of lung tissue obtained from patients with COPD and from mice exposed to cigarette smoke. The researchers separated all the cells within the lung and measured the gene expression profile of each individual cell. Then, they organized this information in a cell atlas that is available to researchers interested in exploring gene expression in individual cells in lungs with the disease.

Our analysis identified novel changes in gene expression and cellular interactions in three distinct cell populations commonly implicated in COPD: epithelial (in the lungs), endothelial (in blood vessels) and macrophage cells (part of the immune system)."

Dr. Ivan Rosas, senior author of the study and section chief of pulmonary, critical care and sleep medicine, Department of Medicine, Baylor College of Medicine

The researchers identified a subpopulation of epithelial cells in lungs with COPD that has abnormal expression of genes involved in metabolic, antioxidant and cellular stress responses, when compared to controls.

"This highly innovative translational study is a continuation of a successful long-standing collaboration with Dr. Naftali Kaminski and colleagues at Yale University, which has led to the description of multiple lung cell atlases in health and disease that are now publicly available. In the current study, Drs. Maor Sauler and John McDonough of Yale University, the corresponding authors, demonstrate that endothelial cells in capillary blood vessels in COPD lungs are inflamed, and that a subpopulation of macrophages expressing high levels of metallothioneins, proteins that regulate the balance of certain metals in the body, seems to contribute to the disease," Rosas said.

Future studies evaluating outcomes of specific alterations identified in this study will provide further insights into mechanisms that contribute to COPD and having a large and accessible data set of COPD cells, such as the cell atlas here, is an essential tool to begin developing therapies to target the condition.

The research team continues to focus on developing innovative genomic datasets to better understand the pathologic underpinnings of chronic lung disease. They are currently in the process of completing the largest COVID-19 lung fibrosis cell atlas.

Source:
Journal reference:

Sauler, M., et al. (2022) Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nature Communications. doi.org/10.1038/s41467-022-28062-9.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Stem Cell-Derived Brain Organoids Model Mitochondrial Diseases