Bacterial-fungal partnership leads to disease in humans

New research discovered that the fungus Rhizopus fights back against soil predators and human immune cells by partnering with a bacteria called Ralstonia in a two-way partnership.

The microscopic world resembles our world in some surprising ways. The environment around us is inhabited by microbes living in complex communities - some friendly and some not so friendly. Microbes compete with each other for resources and must also hide from or fight predators. One example of this is the fungus Rhizopus, which grows in the soil and on spoiled food and is the cause of "black fungus" outbreaks in covid patients.

In the soil, its predator is the amoeba Dictyostelium, a single celled microbe that can move through the soil and engulf Rhizopus, devouring it for nutrients. Scientists from the universities of Exeter and Birmingham found Rhizopus fights back against this predator by partnering with a bacteria called Ralstonia in a two way partnership. By living inside Rhizopus, Ralstonia hides from the predator. In return, Ralstonia makes a toxin that Rhizopus can use to neutralize the predator, preventing it from feeding on the pair.

Why does this matter to human disease? Our immune cells are very much like the predator Dictyostelium: They seek out, engulf, and destroy foreign microbes that enter our bodies, protecting us from infection. This means that Rhizopus and Ralstonia can use the same strategy to avoid predators in the soil to evade our own immune systems. By learning to fight off predators in the soil, Rhizopus has also learned how to cause disease in humans.

This work showed that when its partnership with Ralstonia is disrupted, animals infected with Rhizopus are able to survive this devastating disease. The hope is that by better understanding the ecology and strategies for survival that Rhizopus and other pathogens use in their normal environments, we will be better prepared to combat these microbes when they cause human disease.

This work is really important because while its been known that fungal-bacterial partnerships in the soil impact plant disease for many years, this is the first example of a bacterial-fungal partnership contributing to mucormycosis in humans. We hope this will help us develop better strategies for treating this devastating disease."

Dr Elizabeth Ballou, one of the Principal Investigators for the project

This work was led by Dr. Herbert Itabangi, who was a joint student between Dr. Elizabeth Ballou (Exeter) and Dr. Kerstin Voelz (Birmingham). Dr. Itabangi was funded by a Wellcome Trust Strategic Award (led by Prof Neil Gow while at Aberdeen). Dr. Itabangi's discovery is a key step forward in our understanding of the "black fungus" that causes mucormycosis and was responsible for nearly 40,000 deaths in 2021 as part of the COVID-19 pandemic.

Source:
Journal reference:

Itabangi, H., et al. (2022) A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Current Biology. doi.org/10.1016/j.cub.2022.01.028.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    University of Exeter. (2023, May 10). Bacterial-fungal partnership leads to disease in humans. AZoLifeSciences. Retrieved on December 21, 2024 from https://www.azolifesciences.com/news/20220208/Bacterial-fungal-partnership-leads-to-disease-in-humans.aspx.

  • MLA

    University of Exeter. "Bacterial-fungal partnership leads to disease in humans". AZoLifeSciences. 21 December 2024. <https://www.azolifesciences.com/news/20220208/Bacterial-fungal-partnership-leads-to-disease-in-humans.aspx>.

  • Chicago

    University of Exeter. "Bacterial-fungal partnership leads to disease in humans". AZoLifeSciences. https://www.azolifesciences.com/news/20220208/Bacterial-fungal-partnership-leads-to-disease-in-humans.aspx. (accessed December 21, 2024).

  • Harvard

    University of Exeter. 2023. Bacterial-fungal partnership leads to disease in humans. AZoLifeSciences, viewed 21 December 2024, https://www.azolifesciences.com/news/20220208/Bacterial-fungal-partnership-leads-to-disease-in-humans.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New method combines AI and microfluidics to easily barcode individual cells