Perennial plants could offer a more sustainable solution for future agricultural systems

"I was a child of the late 80s and early 90s, so I was playing outside year-round," says Matthew J. 'MJ' Rubin, PhD, Research Scientist in Dr. Allison Miller's lab, with a laugh. Growing up in central Wisconsin, Matthew was fascinated by the differences across seasons- and in Wisconsin those differences can be extreme. He can see now how his childhood interests have gone on to influence his career, as he explores research questions such as, 'How do plants perceive seasonal changes and how do plants survive across such a wide range of environmental conditions?'

Matthew's research is focused on perennial plants, or "long-lived" plants, seeking to increase our understanding of these plants across their lifetime. Perennial plants offer many benefits to agriculture and our environment. They develop deep root systems that fix carbon, reduce water needs, and help restore soil health. When used for agriculture, perennials can provide multiple harvests from the same plant, offering a more sustainable solution for future agricultural systems.

Accelerating the domestication pipeline

Matthew and his colleagues in the Miller Lab are interested in using perennial plants for commercial agriculture food crops, which would provide many benefits to farmers and the environment. The challenge is that successfully and rapidly domesticating promising perennial crops often relies on genetic screening, an expensive and time-consuming process, especially for underdeveloped species that lack genomic resources.

Today, Matthew is co-leading a research project with Allison Miller, funded by a FFAR Seeding Solutions grant, that aims to accelerate the domestication of perennial crops for use in agriculture. Through the FFAR grant, Matthew, Allison, and collaborators at The Land Institute, Kansas State University and INIFAP are using the physical traits of seeds and seedlings to predict performance in the field (including yield and disease resistance). The research team is focused on three perennial species: Thinopyrum intermedium (Intermediate wheatgrass; perennial grain), Onobrychis viciifolia (sainfoin; perennial legume), and Silphium integrifolium (rosinweed; perennial oilseed). "We're focusing on diverse species in hopes that we can build models that can be applied to other new perennial crop candidates," says Matthew. "The goal is to create tools so it becomes easier and less time-consuming to move perennials through the domestication pipeline."

This is the first time that Matthew has been a co-Principal Investigator on a large research project. "It's been really exciting working on this project from the ground up," explains Matthew. "This opportunity has allowed me to be a part of the process from initial proposal development all the way through research."

Mentoring the next generation of plant scientists

As a first-generation college graduate, scientific mentors have played an important role in his career. "I hadn't met anyone with a PhD until I went to college," explains Matthew. As a sophomore, he knocked on the door of a faculty member who focused on plant genetics. She gave him a copy of Introduction to Quantitative Genetics by Falconer and Mackay and he never looked back. "I have been really fortunate to have had four fantastic scientific mentors: Dr. Lisa Dorn (University of Wisconsin-Oshkosh), Dr. Cynthia Weinig (University of Wyoming), Dr. Jannice Friedman (Syracuse University, now at Queen's University), and Dr. Allison Miller. They have all shaped the way I think about science."

Now a mentor himself, Matthew finds it to be one of the most rewarding parts of his research. "In the first six months of the FFAR project, I have interacted with over 30 collaborators" he explains. "I'm proud to be able to provide opportunities to early-career scientists at all levels and help inspire the next generation of scientists."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Unveiling the Link Between Genetics, Stress, and Type 2 Diabetes