Study Shows How Sea Anemones Recycle Nitrogen Waste to Thrive in Nutrient-Poor Environments

Tropical oceans are typically nutrient-poor, yet they host vast biologically diverse reef ecosystems built by symbiotic cnidarians (including corals and anemones). This apparent contradiction, known as the Darwin Paradox, has puzzled scientists since it was first described by Charles Darwin in 1842.

Now, an international study led by KAUST researchers has demonstrated how the sea anemone Aiptasia distributes the sugar it receives from its symbionts to recycle nitrogen waste efficiently throughout its body, enabling it to thrive in nutrient-poor environments.

"Many previous studies focused on the ocean environment to discover where the limited nutrients come from -; particularly nitrogen, which is very scarce," says research scientist Guoxin Cui, who worked on the project under the supervision of Manuel Aranda.

Some coral-based studies hypothesized that coral-algae symbiosis generated these ecological hotspots. However, the underlying molecular mechanism enabling cnidarians to build these massive ecosystems remained elusive."

Guoxin Cui, research scientist

Cui was particularly interested in examining the symbiotic relationship at the tissue level. Cnidarians have a simple tissue structure consisting of two major cell layers: the gastrodermis and the epidermis. Only the inner layer, the gastrodermis, forms the intracellular relationship with algae.

First, the team adapted a laser microdissection technique to separate the two tissue layers of Aiptasia and study tissue-specific gene expression. Using emerging single-cell RNA-sequencing technology, they investigated the RNA transcription profiles associated with symbiosis at fine cellular scales. This is the first time such techniques have been used to study symbiosis in sea anemones.

The approach allowed the researchers to identify the key transporters involved in nitrogen assimilation, before using antibody staining to track the localization of these nutrient transporters within the anemone.

"We found that the anemone changes the expression and localization of nutrient transporters to distribute the glucose it receives from its symbionts across all of its tissues," says Aranda. "It uses most of its body mass to recycle the nitrogen waste produced, alongside processing any ammonium that is available in the environment."

The symbiotic relationship turns the whole organism into a nitrogen assimilator, notes Cui. "This challenges the widespread belief that algae are the sole actors in nitrogen assimilation; the anemone also plays a major role in recycling this scarce nutrient. They form a single inseparable meta-organism."

The team hope that this study provides the basis for creating better selective breeding methods and may inform efforts to safeguard reef ecosystems. They are expanding their research to examine symbiotic relationships across different cnidarian taxa and ecological contexts.

Source:
Journal reference:

Cui, G., et al. (2023) Molecular insights into the Darwin paradox of coral reefs from the sea anemone Aiptasia. Science Advances. doi.org/10.1126/sciadv.adf7108.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Extracellular Vesicles from Mesenchymal Stromal Cells Restore Joint Health in Osteoarthritis