Gut Microbes Could Be Harnessed to Block Mercury Absorption

New research by a team at Pennsylvania State University suggests that microbes in the human gut could be harnessed to block absorption of toxic metals like mercury and help the body absorb useful nutritional ones, like iron. The group presented their findings at ASM Microbe 2023, the annual meeting of the American Society for Microbiology.   

Methylmercury, a neurotoxin, is particularly worrisome, according to Daniela Betancurt-Anzola, a graduate student at Penn State who led the new study. It has a variety of toxic effects, and it is detrimental for neurological development during pregnancy and childhood, particularly in communities heavily reliant on fish-based diets. Most methylmercury exposure is through fish or shellfish, but it can show up elsewhere as well. “It accumulates in living things, in plants and fish,” she said. “We eat those things, and it accumulates in us.”  

Betancurt-Anzola and her colleagues first analyzed thousands of genomes from gut bacteria, focusing on genetic determinants associated with the ability to interact with metals. Many genes are known to be connected to metal resistance, she said, but the group focused on those that enable bacteria to convert dangerous mercury to less toxic forms and absorb the heavy metal.

To understand how those genes function and impact the host, the team used metagenomic sequencing to study how human and mouse microbes responded to mercury exposure. Finally, the investigators used those insights to develop a probiotic specifically designed to detoxify a harmful type of mercury often found in the human diet. They inserted genes from Bacillus megaterium bacteria, which is known to be highly resistant to methylmercury, into strains of Lacticaseibacillus, a genus of lactic acid bacteria.  

It’s a perfect probiotic for this because we have previously shown it works in humans, and now we are engineering it to make it even better. It is inside the gut, it grabs the methylmercury, then it goes out.”  

Daniela Betancurt-Anzola, graduate student at Penn State  

For now, the group is focused on understanding how gut microbes interact with mercury, but they plan to investigate other metals as well. Their ultimate goal is to develop interventions that could help reduce levels of dangerous metals—like mercury—and boost absorption of those that the human body needs. “We are interested in studying how the entire microbial community reacts to different metals,” Betancurt-Anzola said. .

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists Develop Non-Destructive Method to Study Fish Teeth