Groundbreaking Insights Into How Typical Perfluoroalkyl Acids Accelerate DNA Degradation

Recent research published in the journal Eco-Environment & Health (Volume 2, 2023) reveals groundbreaking insights into how typical PFAAs accelerate the degradation of DNA. The study has uncovered that PFAAs, commonly known as "forever chemicals", significantly expedite the enzymatic degradation of DNA, even at low concentrations. This discovery sheds light on the molecular ecological effects of PFAAs and underscores potential environmental risks.

The study employed modern techniques such as gel electrophoresis, ultraviolet-visible spectroscopy, atomic force microscopy and density functional theory calculations followed by symmetry-adapted perturbation theory analysis, to analyze the interaction between various PFAAs and DNA. It was observed that PFAAs bind with AT base pairs in DNA through van der Waals forces and hydrogen bonding, leading to a looser DNA structure. This alteration makes DNA more susceptible to enzymatic degradation. Notably, the effect was pronounced even at PFAA concentrations as low as 0.02 mg/L, establishing a non-linear dose-effect relationship.

Our research provides new insights into how PFAAs interact with DNA at a molecular level. We've demonstrated for the first time the significant effect these substances have on accelerating DNA enzymatic degradation, a finding that could have far-reaching implications for understanding the ecological impact of these persistent pollutants."

Professor Lei Xiang, leading author of the study from Jinan University

The findings have critical implications for understanding the ecological risks posed by PFAAs. The study's global ecological risk evaluation revealed medium to high molecular ecological risks in several countries, including the USA, Canada, and China, due to PFAA contamination. This highlights the urgent need for more comprehensive environmental monitoring and stricter regulations regarding the use and disposal of PFAAs.

This study serves as a wake-up call, urging scientists and policymakers to pay closer attention to the hidden ecological impacts of "forever chemicals" like PFAs. By unraveling the complex operation of molecules in our environment, we can safeguard the health of ecosystems and ensure a sustainable future for all.

Source:
Journal reference:

Qin, C., et al. (2023). Insights into the enzymatic degradation of DNA expedited by typical perfluoroalkyl acids. Eco-Environment & Health. doi.org/10.1016/j.eehl.2023.09.002.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New Study Links Cannabis Use to DNA Methylation Changes in Mental Health Pathways