Study Reveals Dual Contractility Modes in Cancer Cell Invasion

Understanding how cancerous cells spread from a primary tumor is important for any number of reasons, including determining the aggressiveness of the disease itself. The movement of cells into the extracellular matrix (ECM) of neighboring tissue is an essential step in cancer progression that directly correlates to the onset of metastasis.

In APL Bioengineering, by AIP Publishing, a team of researchers from Germany and Spain used a breast cancer cell line panel and primary tumor explants from breast and cervical cancer patients to examine two different cellular contractility modes: one that generates collective tissue surface tension that keeps cell clusters compact and another, more directional, contractility that enables cells to pull themselves into the ECM.

We focused on two parameters, namely the ability of the cells to pull on the ECM fibers and generate traction forces and on their ability to pull on each other, thereby generating a high tissue surface tension. We linked each property to different contractile mechanisms and asked how they are connected to cancer cell escape and tumor aggressiveness."

Eliane Blauth, Author

The team found that more aggressive cells pull more strongly on the ECM than on themselves while noninvasive cells pull more strongly on themselves than on the ECM – and that the different pulling behaviors are attributed to different structures of actin cytoskeleton inside the cells. Invasive cells use predominantly actin stress fibers -; thick actin bundles that span the cell -; to generate forces on their surroundings, while noninvasive cells generate forces through their actin cortex, a thin network directly under the cell membrane.

The study showed it is not the overall magnitude of these contractility modes but the interplay between them that determines a cell's potential for escape. Experiments with only moderately invasive cells demonstrated the total force these cells generate on the ECM fibers is comparable to that of noninvasive cells, yet they can still detach and invade the ECM, which is not possible for noninvasive cells.

"The noninvasive cells still have a high cortical contractility, keeping them together, while the moderately invasive cells have a nearly disappearing cortical contractility," said Blauth. "So not much is holding them back even though they pull much weaker on the ECM fibers."

The team's measurements with patient-derived vital tumor explants confirmed their findings from the cell line experiments. Here, the number of cells with a high cortical contractility decreased during tumor progression.

"This further indicates that the ability of the cells to pull on each other and hold themselves clustered together becomes weaker as the tumor grows, potentially increasing metastasis risk."

Source:
Journal reference:

Blauth, E., et al. (2024) Different contractility modes control cell escape from multicellular spheroids and tumor explants. APL Bioengineering. doi.org/10.1063/5.0188186.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Unveiling Human Stem Cell Model with Functional Notochord