Novel Protein 'Cloaking' Technique for Enhanced Therapeutic Applications

Cornell University scientists have designed a way to "cloak" proteins in a generalized technique that could lead to repurposing things like antibodies for biological research and therapeutic applications.

The "cloaked" proteins can be captured by lipid nanoparticles, which are akin to tiny bubbles of fat. These bubbles are small enough to sneak their hidden cargo into living cells, where the proteins uncloak and exert their therapeutic effect.

The group's paper published in ACS Central Science. The lead author is doctoral student Azmain Alamgir, who works in the labs of the paper's co-senior authors, Chris Alabi, associate professor of chemical and biomolecular engineering, and Matt DeLisa, professor of engineering.

For some drugs to impact a cell's biology, and ultimately treat disease, they need to get inside the cell and reach a specific space. Protein-based therapeutics have many virtues – they can have more specific effects, with lower toxicity and diminished immune response – but ease of delivery is not one of them. Proteins are large and cumbersome and don't freely diffuse into cells as easily as small molecules do.

We had been looking for a clever way to efficiently get our engineered proteins inside of cells, especially in a translational context that would not only work in lab-cultured cells, but that would also be effective and safe in animal models and eventually in humans."

Matt DeLisa, professor of engineering

The researchers had the broad idea of using a bioconjugation approach that would allow the proteins to be loaded into lipid nanoparticles, which form around nucleic acids. A major advantage of this approach was that lipid nanoparticles were a key component in the successful COVID-19 vaccines developed by Pfizer-BioNTech and Moderna.

Those vaccines worked by delivering a payload in the form of messenger RNA, which are nucleic acids. The researchers now would use the same lipid nanoparticle delivery concept – the same materials even – but with a protein payload. The trick would be to make proteins look more like nucleic acids.

The researchers found they could accomplish this by "cloaking" the proteins with a negatively charged ion, so they would join with the positively charged lipids electrostatically.

"The crux of our strategy is conceptually very simple," Alamgir said. "We're taking proteins and specifically remodeling their surfaces with negative charges, so they look like nucleic acids and can similarly assemble into nanoparticles when formulated with the characteristic lipids."

The team successfully demonstrated the cloaking method with lysine-reactive sulfonated compounds, killing cancer cells with ribonuclease A and inhibiting tumor signaling with monoclonal immunoglobulin G (IgG) antibodies.

Source:
Journal reference:

Alamgir, A., et al. (2024). Bioreversible Anionic Cloaking Enables Intracellular Protein Delivery with Ionizable Lipid Nanoparticles. ACS Central Science. doi.org/10.1021/acscentsci.4c00071.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Stanford Researchers Develop New Approach to Make Cancer Cells Self-Destruct