Researchers Cultivate an Ultrasmall Bacterial Strain Parasitizing Archaea

AIST researchers, in collaboration with JAMSTEC, Hokkaido University and Tohoku University, have succeeded in cultivating an ultrasmall bacterial strain parasitizing archaea and classified the strain PMX.108T as new species and genus of Minisyncoccus archaeiphilus.

We have discovered, for the first time in the world, bacteria that parasitize the methanogenic archaea, which play a central role in anaerobic wastewater treatment systems. The ultrasmall bacterium inhibits the growth of the host methanogenic archaeon Methanospirillum hungatei. This study represents the first successful cultivation of ultrasmall bacteria that parasitize archaea, which evolutionarily diverged approximately 4 billion years ago and exhibit significant biological differences in cell membrane lipids, genetic information, and other biochemical characteristics. The bacterium was observed to have limited host range and to attach only host archaeon-specific sites.

Furthermore, we have proposed a new phylum Minisyncoccota formerly known as candidate phyla radiation (CPR). The phylogenetically classification and deposition of the CPR bacterium to a public culture collection will advance research on the CPR bacteria, and is expected to advance our understanding of the physiology and ecological role of the bacteria, which have remained a mystery until now.

Background

Candidate phyla radiation (CPR), a large bacterial phylogenetic group that includes various uncultivated lineages, are ubiquitous in natural and artificial environments, but their ecophysiology in ecosystems remains largely unknown due to the difficulty of cultivating them. The CPR bacteria have been predicted to adopt a parasitic or predatory lifestyles on the host organisms because of their small cell and genome size and lack of biosynthetic pathways for their growth. Although some CPR bacteria that demonstrate intra-domain interactions have been successfully cultured, there are no cases where cultured strains have been made publicly available through culture collections, which is hindering the progress in the research field.

Source:
Journal reference:

Nakajima, M., et al. (2025). Minisyncoccus archaeiphilus gen. nov., sp. nov., a mesophilic, obligate parasitic bacterium and proposal of Minisyncoccaceae fam. nov., Minisyncoccales ord. nov., Minisyncoccia class. nov. and Minisyncoccota phyl. nov. formerly referred to as Candidatus Patescibacteria or candidate phyla radiation. International Journal of Systematic and Evolutionary Microbiology. doi.org/10.1099/ijsem.0.006668.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Zinc Stress Exposes Vulnerabilities in Drug-Resistant Bacteria