Study reveals the sensitivity of soil carbon turnover to global warming

Global warming of 2 °C would lead to about 230 billion tonnes of carbon being released from the world's soil, new research suggests.

Global soils contain two to three times more carbon than the atmosphere, and higher temperatures speed up decomposition - reducing the amount of time carbon spends in the soil (known as "soil carbon turnover").

The new international research study, led by the University of Exeter, reveals the sensitivity of soil carbon turnover to global warming and subsequently halves uncertainty about this in future climate change projections.

The estimated 230 billion tonnes of carbon released at 2°C warming (above pre-industrial levels) is more than four times the total emissions from China, and more than double the emissions from the USA, over the last 100 years.

Our study rules out the most extreme projections - but nonetheless suggests substantial soil carbon losses due to climate change at only 2°C warming, and this doesn't even include losses of deeper permafrost carbon."

Dr Sarah Chadburn, Study Co-Author, University of Exeter

This effect is a so-called "positive feedback" - when climate change causes knock-on effects that contribute to further climate change.

The response of soil carbon to climate change is the greatest area of uncertainty in understanding the carbon cycle in climate change projections.

To address this, the researchers used a new combination of observational data and Earth System Models - which simulate the climate and carbon cycle and subsequently make climate change predictions.

"We investigated how soil carbon is related to temperature in different locations on Earth to work out its sensitivity to global warming," said lead author Rebecca Varney, of the University of Exeter.

State-of-the-art models suggest an uncertainty of about 120 billion tonnes of carbon at 2°C global mean warming.

The study reduces this uncertainty to about 50 billion tonnes of carbon.

Co-author Professor Peter Cox, of Exeter's Global Systems Institute, said: "We have reduced the uncertainty in this climate change response, which is vital to calculating an accurate global carbon budget and successfully meeting Paris Agreement targets."

The work was carried-out in collaboration with scientists from the Met Office and institutes in the USA and Sweden.

The study, published in Nature Communications, is entitled: "A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming."

Source:
Journal reference:

Varney, R. M., et al. (2020) A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nature Communications. doi.org/10.1038/s41467-020-19208-8.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    University of Exeter. (2023, May 10). Study reveals the sensitivity of soil carbon turnover to global warming. AZoLifeSciences. Retrieved on January 24, 2025 from https://www.azolifesciences.com/news/20201103/Study-reveals-the-sensitivity-of-soil-carbon-turnover-to-global-warming.aspx.

  • MLA

    University of Exeter. "Study reveals the sensitivity of soil carbon turnover to global warming". AZoLifeSciences. 24 January 2025. <https://www.azolifesciences.com/news/20201103/Study-reveals-the-sensitivity-of-soil-carbon-turnover-to-global-warming.aspx>.

  • Chicago

    University of Exeter. "Study reveals the sensitivity of soil carbon turnover to global warming". AZoLifeSciences. https://www.azolifesciences.com/news/20201103/Study-reveals-the-sensitivity-of-soil-carbon-turnover-to-global-warming.aspx. (accessed January 24, 2025).

  • Harvard

    University of Exeter. 2023. Study reveals the sensitivity of soil carbon turnover to global warming. AZoLifeSciences, viewed 24 January 2025, https://www.azolifesciences.com/news/20201103/Study-reveals-the-sensitivity-of-soil-carbon-turnover-to-global-warming.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers analyze and demonstrate how organelles divide into cells