New breakthrough in understanding how single-cell algae keep track of light as they swim

Scientists have made a pivotal breakthrough in the quest to understand how single-cell green algae are able to keep track of the light as they swim.

A team of researchers from the University of Exeter's flagship Living Systems Institute has discovered how the model alga Chlamydomonas is seemingly able to scan the environment by constantly spinning around its own body axis in a corkscrewing movement. This helps it respond to light, which it needs for photosynthesis.

The tiny alga, which is found abundantly in fresh-water ponds across the world, swims by beating its two flagella, hair-like structures that adopt a whip-like movement to move the cell. These flagella beat in much the same way as the cilia in the human respiratory system.

Chlamydomonas cells are able to sense light through a red eye spot and can react to it, known as phototaxis. The cell rotates steadily as it propels itself forwards using a sort of breaststroke, at a rate of about once or twice a second, so that its single eye can scan the local environment.

However, the intricate mechanism that allows the alga to achieve this helical swimming has been previously unclear.

In the new study, the researchers first performed experiments which revealed that the two flagella in fact beat in planes that are slightly skewed away from each other.

Then, creating a sophisticated computer model of Chlamydomonas, they were able to simulate the flagella movement and reproduce the observed swimming behavior.

The researchers discovered that the flagella were able to move the Chlamydomonas in a clockwise fashion with each power stroke, and then anticlockwise on the reverse stroke - akin to how a swimmer rocks back and forth when switching from one arm to another. Except here the cell feels no inertia.

Furthermore, they also deduced how simply by exerting slightly different forces on the two flagella, the alga can even steer, rather than just move in a straight line.

The researchers were able to show that by adding in an additional influence, such as light, the alga can navigate left or right by knowing which flagellum to stroke harder than the other.

Dr Kirsty Wan, who led the study said: "The question of how a cell makes these types of precise decisions can be a matter of life or death. It's quite a remarkable feat of both physics and biology, that a single cell with no nervous system to speak of is able to do this...It's an age-old mystery that my group is currently working hard to solve."

For the study, the researchers were able to test various scenarios to determine which variables were influencing the trajectory. Their study showed that by varying different parameters, such as if one flagella is slightly stronger than another, the tilt plane of the flagella or its beat pattern, the algae can manipulate its own movement.

The agreement of our model with the experiments is surprising really, that we could effectively capture the complex 3D beat of the flagella with a very simple movement of a bead going around in circles."

Dr Dario Cortese, Team Member

Source:
Journal reference:

Cortese, D & Wan, K.Y (2021) Control of Helical Navigation by Three-Dimensional Flagellar Beating. Physical Review Letters. doi.org/10.1103/PhysRevLett.126.088003.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    University of Exeter. (2022, December 14). New breakthrough in understanding how single-cell algae keep track of light as they swim. AZoLifeSciences. Retrieved on January 24, 2025 from https://www.azolifesciences.com/news/20210225/New-breakthrough-in-understanding-how-single-cell-algae-keep-track-of-light-as-they-swim.aspx.

  • MLA

    University of Exeter. "New breakthrough in understanding how single-cell algae keep track of light as they swim". AZoLifeSciences. 24 January 2025. <https://www.azolifesciences.com/news/20210225/New-breakthrough-in-understanding-how-single-cell-algae-keep-track-of-light-as-they-swim.aspx>.

  • Chicago

    University of Exeter. "New breakthrough in understanding how single-cell algae keep track of light as they swim". AZoLifeSciences. https://www.azolifesciences.com/news/20210225/New-breakthrough-in-understanding-how-single-cell-algae-keep-track-of-light-as-they-swim.aspx. (accessed January 24, 2025).

  • Harvard

    University of Exeter. 2022. New breakthrough in understanding how single-cell algae keep track of light as they swim. AZoLifeSciences, viewed 24 January 2025, https://www.azolifesciences.com/news/20210225/New-breakthrough-in-understanding-how-single-cell-algae-keep-track-of-light-as-they-swim.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Ancestors of many animal species may have inhabited a deltaic environment