Newly discovered RNA-guided endonucleases can be harnessed for genome editing in cells

Researchers seeking to understand the origins of CRISPR-Cas9 systems have uncovered a class of transposon-encoded RNA-guided nucleases, which they dubbed "OMEGA," that could be harnessed for genome editing in human cells. These systems hold strong potential for developing as biotechnologies, the authors say.

CRISPR-Cas systems have transformed genome editing and other biotechnologies; however the broader origins and diversity of these RNA-guided mechanisms have largely remained unexplored. The likely ancestors of the RNA-guided endonuclease Cas9 are a group of proteins – IscB proteins – in a family of transposons known as the IS200/IS605 transposons.

Here, Han Altae-Tran and Feng Zhang and colleagues reconstructed the evolution of CRISPR-Cas9 systems from IS200/IS605 transposons. In doing so, they report that three distinct transposon-encoded proteins, IscB, IsrB, and TnpB, are naturally occurring, reprogrammable, RNA-guided DNA nucleases that can be harnessed for genome editing in human cells. The authors dubbed these newly characterized systems OMEGA (Obligate Mobile Element Guided Activity).

"The broad distribution of the…systems characterized here indicates that RNA-guided mechanisms are more widespread in prokaryotes than previously suspected," they say, "and suggests that RNA-guided activities are likely ancient and evolved on multiple, independent occasions, of which only the most common ones have likely been identified so far."

Source:
Journal reference:

Altae-Trant, H., et al. (2021) The widespread IS200/605 transposon family encodes diverse programmable RNA-guided endonucleases. Science. doi.org/10.1126/science.abj6856.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
CRISPR Reveals Hidden Functions of Noncoding RNA