New Initiative Targets High-Risk Genes to Understand Neurodevelopmental and Psychiatric Disorders

Neurodevelopmental and psychiatric disorders (NPD) including schizophrenia, bipolar disorder, autism, and depression are detrimental to individuals, their families and society as a whole, and in many cases still lack effective treatments. It's becoming more and more clear that genetic mutations in certain genes can increase the likelihood of developing NPD, and several hundreds of those "risk genes" have been identified to date, but their role related to NPD remains a mystery.

"Very little is known about the basic function of most of these genes, and what we do know often comes from work in cancer cell lines rather than brain cell types," says David Panchision, Chief of the Developmental and Genomic Neuroscience Research Branch at the National Institute of Mental Health (NIMH), who spearheaded the SSPsyGene program aiming to tackle this challenge. "As such, we still don't have a clear understanding of how alterations in these genes may work individually or in combination to contribute to neurodevelopmental and psychiatric disorders."

To get to the bottom of this, the National Institute of Mental Health (NIMH) initiated a consortium called SSPsyGene (sspsygene.ucsc.edu) in 2023, uniting research teams from renowned US universities with the joint goal of characterizing the genetic origins of NPD, focusing on 250 selected high-risk genes. Among the contributors are Jubao Duan, Endeavor Health (formerly NorthShore University Health System) and University of Chicago, USA and Zhiping Pang, Rutgers University, USA with their teams, who developed a method for mutating NPD risk genes in human stem cells at large scale. In the modified cells, a selected NPD risk gene is mutated so that it no longer makes a functional protein. The modified stem cells can subsequently be turned into neurons and other brain cells to model the consequences of risk gene mutations in a simplified, lab-based version of the human brain. In the initial phase of the project, the teams tested 23 NPD risk genes, reported in work published in a recent article in the journal Stem Cell Reports. The resulting stem cell lines will be made available to other researchers worldwide to facilitate research on those risk genes and their contribution to NPD. In future works, Pang, Duan and the other members of the consortium will join forces to generate mutated stem cell lines for a much larger number of risk genes, with the ultimate goal of understanding the genetic causes for NPD and for generating better treatments.

The hope is that this collaborative work will generate a highly impactful resource for the neuroscience and psychiatric research community."

David Panchision, Chief of the Developmental and Genomic Neuroscience Research Branch, National Institute of Mental Health

Source:
Journal reference:

Zhang, H., et al. (2024) Scaled and efficient derivation of loss-of-function alleles in risk genes for neurodevelopmental and psychiatric disorders in human iPSCs. Stem Cell Reportsdoi.org/10.1016/j.stemcr.2024.08.003.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Discovery of RNA Brake Offers Insights into Neurodevelopmental Disorders